The present invention relates in general to systems used to determine whether an airbag should be deployed at full or only partial strength. In particular, the present invention is an image processing system that utilizes real-time streaming video-images from a video camera or other sensor to determine the mass, velocity, and kinetic energy of the occupant at the time that the occupant comes into contact with the deploying airbag. By predicting the kinetic energy of the occupant at the time of impact, an airbag can be deployed at an appropriate strength corresponding to the kinetic energy of the occupant. The kinetic energy of the deploying back at the moment of impact should be equal to the kinetic energy of the occupant. The invention captures the volume of the occupant from an image, and uses volume to calculate the mass of the occupant. A Kalman filter is used with respect to all measurements to incorporate past predictions and measurements into the most recent estimates and predictions in order to eliminate the "noise" associated with any particular measurement. The system predicts the position and shape of the occupant at a faster rate than the rate at which the camera collects data.

 
Web www.patentalert.com

< Image processing system for estimating the energy transfer of an occupant into an airbag

< Image processing system for estimating the energy transfer of an occupant into an airbag

> Method for automatically shutting down a machine during an operator's absence

> Driving force control system for front-and-rear wheel drive vehicles

~ 00074