A nuclear magnetic resonance (NMR) method for detecting hydrogen peroxide includes providing a liquid sample in a static magnetic field; stimulating a spin signal in the sample by exciting the sample with a first electromagnetic pulse having a frequency corresponding to the hydrogen NMR frequency in the static magnetic field; waiting for a first time period; refocusing the spin signal in the sample for a first number of times by a series of second electromagnetic pulses having a frequency corresponding to the hydrogen NMR frequency in the static magnetic field, said second electromagnetic pulses being separated by a first echo time, while sampling a first train of spin signals in between the second electromagnetic pulses; and refocusing the spin signal in the sample for a second number of times by a series of third electromagnetic pulses having a frequency corresponding to the hydrogen frequency in the static magnetic field, said third electromagnetic pulses being separated by a second echo time while sampling a second train of spin signals in between the third electromagnetic pulses, wherein the second echo time is different from the first echo time. A first spin-spin relaxation time is derived from the first train of spin signals and a second spin-spin relaxation time is derived from the second train of spin signals, and the presence of hydrogen peroxide is signaled if the quotient of the first spin-spin relaxation time to the second spin-spin relaxation time is different from one.

 
Web www.patentalert.com

< METHOD OF PERFORMING MRI WITH AN ATOMIC MAGNETOMETER

> HYPERPOLARIZED 89-YTTRIUM AND METHODS RELATING THERETO

> Motion corrected tensor magnetic resonance imaging

~ 00598