Techniques are disclosed for designing optical transmission systems that efficiently compute cost-optimal configurations under one or more constraints. For example, in one aspect of the present invention, a technique for designing an optical transmission system comprises the following steps/operations. A set of one or more demands and a set of optical transmission system elements are obtained. Elements may be consecutively coupled via a span. At least one constraint on the design of the optical transmission system is obtained. The at least one constraint comprises: (i) a signal loss in a span should not exceed a given maximum signal loss; (ii) a signal loss in a span should not exceed a given maximum signal loss and a span should be longer than a given minimum span length; (iii) a signal loss in a span should not exceed a given first maximum signal loss and a span should be longer than a given minimum span length, however, at most one in m contiguous spans can have a loss up to a given second maximum signal loss, wherein the second maximum signal loss is greater than the first maximum signal loss; or (iv) a signal loss in a span should not exceed a given maximum signal loss and a span should be longer than a given minimum span length, and an average span loss of any m consecutive spans should not exceed a given average loss, wherein the average loss is less than the given maximum signal loss. A least-cost configuration is then computed for the optical transmission system based on at least a portion of the set of one or more demands and the set of one or more optical transmission system elements such that the at least one constraint is satisfied.

 
Web www.patentalert.com

< Deterministic wavelet thresholding for general-error metrics

> Restricted frequency band remote device communication authorization by geographic location

> Method of scheduling for mobile stations in wireless communication networks

~ 00596