Method for constructing an integrated rock physics model that simulates both shale anisotropy and stress-induced anisotropy of clastic rocks. In the model, the total pore volume is divided into three parts according to the estimated shale volume and effective stress: (1) clay-related pores, (2) sand-related pores, and (3) microcracks (mainly in the sand component). The pore space is then partitioned into the clay-related and sand-related pores using a scheme first disclosed by Xu and White in 1995. The model simulates shale anisotropy via the preferred orientation of clay-related pores and stress-induced anisotropy via the preferred orientation of microcracks, which is controlled by the differential stresses. Laboratory measurements or well logs are needed to establish a relationship between crack density and the effective stress.

 
Web www.patentalert.com

< On-line absolute viscosity measurement system

> Molecular sieve catalyst composition, its making and use in conversion processes

> Catalytic conversion of oxygenates to olefins

~ 00586