This invention teaches power factor corrected 3-phase ac-dc power converters in which the duty-cycles are determined by "natural modulation", that is, they are forced by a fixed algorithm that has been optimized for efficient switching. The duty-cycles do not regulate the output voltage but they do force the input currents to be proportionately correct for good power factor. A feedback control circuit modulates the effective turns-ratio of a variable dc-dc transformer to regulate the output voltage. For a buck converter, the most efficient duty-cycle is 100%, that is, the buck switch is always on. For a boost converter, the most efficient duty-cycle is 0%, that is, the boost switch is always off. "100% duty-cycle" as defined for a buck 3-phase ac input means that there is no off-time. The switch duty-cycles are as follows: The duty-cycle for the phase with the highest voltage magnitude (the dominant phase) is 100%, and sum of the duty-cycles of the other two phases equals 100%. "0% duty-cycle" as defined for a boost 3-phase ac input means that the input is never short circuited line to line. The duty-cycle for the switch for the phase with the highest voltage magnitude (the dominant phase) is 0%, and switches of the other two phases modulate to control their respective input currents.

 
Web www.patentalert.com

< Switched-capacitor regulators

> Battery management system (BMS) and driving method thereof

> Phase control system for switching power supply pre-regulator allows increased power transformer leakage inductance

~ 00567