The present invention provides a method for cleavage of labile functional groups from molecules by the action of electromagnetic radiation, wherein the molecules are contacted with a chemical compound whose triplet state is energetically higher than the triplet state of the labile functional group, and are subsequently exposed to electromagnetic radiation. Further, the invention provides a method for preparing DNA chips by spatially addressed, light-controlled nucleotide synthesis on solid substrates, said method comprising the following steps: a) reacting the unprotected terminal 3' or 5' hydroxy group of a nucleoside and/or of a nucleotide arranged on the solid substrate under usual conditions with a photolabile protective group and optionally purifying the reaction product, b) applying a solution, suspension or dispersion of a chemical compound, whose triplet state is energetically higher than the triplet state of the photolabile protective group, to the surface of the carrier, said surface comprising the nucleotides and/or nucleosides modified in step a): c) irradiating, in a spatially selective manner, the surface of the carrier treated in step b) with electromagnetic radiation in the UV/VIS range with simultaneous, spatially selective release of a reactive OH group and subsequently reacting it with a nucleoside and/or nucleotide comprising a 5' or 3'OH group, said nucleoside and/or nucleotide being further provided with a photolabile functional group. Moreover, the present invention provides a chemical composition comprising a molecule having a labile functional group, as well as a chemical compound whose triplet state is higher than the triplet state of the labile functional group, and it describes the use of the chemical composition for preparing DNA chips.

 
Web www.patentalert.com

< Plasticized polyolefin compositions

> Acrylic pressure-sensitive adhesives with aziridine crosslinking agents

> Process for improving the durability, dimensional stability and surface hardness of a wood body

~ 00551