A method of manufacturing a copper-based catalyst having high activity and superior heat resistance and a catalyst used for steam reforming of methanol has Al alloy particles each having an oxide surface layer containing fine copper oxide particles. The Al alloy particles are produced by leaching Al alloy particles with an aqueous solution. The Al alloy particles are prepared by pulverizing a bulky Al alloy having a quasicrystalline phase, the quasicrystalline phase being represented by the formula Al.sub.100-y-zCu.sub.yTM.sub.z (where y is 10 to 30 atomic percent, z is 5 to 20 atomic percent, and TM indicates at least one of transition metals other than Cu). In the catalyst, the oxide surface layer containing fine copper oxide particles is formed by adjusting leaching conditions so as to form an oxide surface layer, which contains dispersed fine Cu particles and which is composed of an Al oxide and a transition metal oxide, on the surface of each of the Al alloy particles. The leached Al alloy particles are heat treated in an oxidizing atmosphere, whereby some or all of the fine Cu particles contained in the oxide surface layer are converted into the fine copper oxide particles.

 
Web www.patentalert.com

< Method of fabricating a catalytic structure

> Hydrogenation process

> Methods and compositions for the treatment of eye disorders with increased intraocular pressure

~ 00545