A method forms a first active electronic layer, prints an array of pillars on the first active electronic layer, dispenses a curable polymer over the array of pillars, molds the curable polymer by contacting the curable polymer with a mold structure to displace the curable polymer from upper surfaces of the pillars, cures the curable polymer to produce a hardened polymer, and removes the array of pillars to leave an array of holes in the hardened polymer. Another method provides a substrate having selected areas, prints an array of pillars on the substrate, dispenses a curable polymer over the array of pillars, molds the curable polymer by contacting the array of pillars with a mold structure to displace the curable polymer from upper surfaces of the pillars, cures the curable polymer to produce a hardened polymer, and removes the array of pillars to leave an array of holes in the hardened polymer corresponding to the selected areas. Another method forms a first active electronic layer on a substrate, prints an array of conductive pillars on the active electronic layer on a substrate, dispenses a curable polymer on the array of conductive pillars, molds the curable polymer by contacting the array of pillars with a mold structure to displace the curable polymer from the upper surfaces of the conductive pillars, curing the curable polymer to produce a hardened polymer, and forms a second active electronic layer on the hardened polymer such that the second active electronic layer is in electrical connection with the first active electronic layer through the conductive pillars.

 
Web www.patentalert.com

< Method of fabricating semiconductor device

> Methods of manufacturing bentonite pollution control sorbents

> Automated accelerated extraction of trace elements from biomass

~ 00541