A booster circuit according to an embodiment of the present invention comprises: an input terminal; an output terminal; a common terminal; a transformation unit including first, the second, and the third windings, the windings wound in the same direction and connected in series; a first rectifier unit provided between the input terminal and a connection point of the first and the second windings; a second rectifier unit provided between the input terminal and a connection point of the second and the third windings; a first switching unit provided between one end of the transformation unit and the common terminal; a second switching unit provided between other end of the transformation unit and the common terminal; a third rectifier unit provided between a connection point of one end of the transformation unit and the first switching element and the output terminal; and a fourth rectifier unit provided between a connection point of other end of the transformation unit and the second switching element and the output terminal. The first winding and the third winding have the approximately same number of turns, and the first switching element and the second switching element open and close alternately to each other in response to a pair of control signals. Thereby, it is possible to provide a booster circuit that is capable of generating an output voltage, which is more than twice as high as an input voltage, and can be reduced in the size and the weight.

 
Web www.patentalert.com

< Adaptive zero current sense apparatus and method for a switching regulator

> Hybrid switched mode/linear power amplifier power supply for use in polar transmitter

> Hybrid filter for high slew rate output current application

~ 00538