A process to identify peptide antagonists of Hsp16.3, a chaperon protein necessary for the survival of Mycobacterium tuberculosis in the dormant phase is described. Affinity selection of a 7-mer and a 12-mer random peptide libraries displayed on bacteriophage M13 was performed using recombinant Hsp16.3 as template and two peptide phage clones, which bind to the Hsp16.3 protein were identified. Synthetic peptides corresponding to the peptide sequences displayed on these phage clones were able to specifically bind and inhibit the chaperone function of Hsp16.3 in vitro in a dose dependent manner. The corresponding inhibitory effect of these peptides on the chaperon activity of alphaB-crystallin, a constituent of human eye lens and a homologue of Hsp16.3, was found to be substantially less. These peptide inhibitors, or similar inhibitors generated by the process described, which specifically target Hsp16.3, can hence be used as lead compounds to obtain better therapeutics against latent tuberculosis.

 
Web www.patentalert.com

< Process and system for drying and heat treating materials

> Coumarin compound, material for light emitting device and organic electroluminescent device

> Liquid cyclohexane-tricarboxylic acid anhydride

~ 00537