A power converter is disclosed. According to one embodiment, the power converter includes a first stage including a current source for generating a current signal, and a second stage. The second stage includes n output circuits coupled to the current source for converting the current signal into n corresponding output voltages. Each of the n output circuits includes an output switch responsive to a corresponding n.sup.th control signal for regulating the corresponding n.sup.th output voltage. The second stage further includes a controller for generating the n control signals. The controller includes, for each of the n output circuits, an error amplifier, a waveform generator, and a summing circuit. Each error amplifier generates an output signal based upon a comparison of the output voltage of the n.sup.th output circuit and a corresponding n.sup.th reference voltage. Each waveform generator generates a waveform signal. The waveform signals for the n output circuits are characterized by a common amplitude and period, and the phases of the waveforms signals are spaced at predetermined intervals. The summing circuit sums the output of the error amplifier and the waveform signal to generate an amplitude-shifted waveform signal. The controller further includes a comparator circuit for outputting the n control signals to the output switches based upon a comparison of the relative amplitudes of the amplitude-shifted waveform signals.

 
Web www.patentalert.com

< Switch mode power supply controllers

> Constant power foldback mechanism programmable to approximate safe operating area of pass device for providing connection to load

> Power-supply apparatus

~ 00521