The present invention uses an intra-cavity modulation approach to modulate a laser transmitter at bandwidths greater than a few gigahertz (GHz) in a non-ambiguous waveform by chirping the laser and simultaneously mode locking. Accordingly, the inventive system includes a source of a beam of electromagnetic energy; a mechanism for mode locking the beam; and an arrangement for chirping the beam. In the illustrative embodiment, the source is a laser. The mode locking mechanism may be an active element or a passive element. The beam is chirped with a translation mirror. The translation mirror may be driven with a piezo-electric drive coupled. In the best mode, the carrier is chirped with an electro-optical crystal disposed in the cavity of the laser. The laser is chirped to the free-spectral range limit, which is typically a few hundred megahertz, by scanning the optical length of the laser resonator. After simultaneously mode locking, the waveform created is a train of mode locked pulses that have an optical carrier frequency chirped in time.

 
Web www.patentalert.com

< Optical semiconductor device and driving method thereof

> Ultrahigh energy short pulse lasers

> Phase-control in an external-cavity tuneable laser

~ 00504