A system for observing the internal features of an object, such that the object's internal absorption, refraction, reflection and/or scattering properties are visualized, is disclosed. An embodiment may include one or more beams of penetrating radiation, an object with internal features to be imaged, a single or an array of radiation optics, and a detection system for capturing the resultant shadowgraph images. The beam(s) of radiation transmitted through the object typically originate from a line-shaped source(s), which has high spatial purity along the narrow axis, and low spatial purity in the perpendicular, long axis. In the long axis, radiation optic(s) capture and focus diverging rays exiting from the object to form a high resolution image of the object, without which optic(s) the shadowgraph would have blurring in this axis. Such shadowgraph is naturally well defined in the opposite axis of narrow beam origin and can reveal an object's refraction, reflection and/or scattering properties along that axis. An embodiment may also include discriminators (stops, phase shifters, analyzer crystals, etc.) in the beam exiting the object. An embodiment may also include mechanisms for scanning whereby a two-dimensional or three-dimensional image of a large object is made possible. An embodiment may also include an image of an object's internal features being derived from an analysis of the radiation and/or radiation waveform exiting the object.

 
Web www.patentalert.com

< Determining a target-to-surface distance and using it for real time absorbed dose calculation and compensation

> X-ray imaging of baggage and personnel using arrays of discrete sources and multiple collimated beams

> Composite coating for improved wear resistance for x-ray tube bearings

~ 00504