Particular aspects provide six novel Ricinus communis cDNA clones, including cloned sequences of: DGAT (RcDGAT1 and RcDGAT2); RcLPAT; LACS (RcLACS4), and PDAT (RcPDAT1A and RcPDAT1B). Additional aspects provide methods for substantially enhanced accumulation of hydroxy fatty acid (HFA) in transgenic plant tissue (e.g., seeds), comprising expression of particular novel sequences. For example, expression of RcDGAT2 or RcPDAT1 in castor hydroxylase-expressing Arabidopsis lines resulted in substantially enhanced accumulation of hydroxy fatty acid (HFA) (e.g., to over 30%; a 50-70% increase in HFA accumulation) relative to the hydroxylase-only expressing parental lines. Further aspects provide methods to increase at least one of total lipid content, percent seed germination, and seed weight in transgenic plants, comprising expression of RcDGAT2 in castor hydroxylase-expressing plant lines. Yet further aspects provide methods for expressing and accumulating hydroxyl fatty acid in yeast (e.g., TAG biosynthesis from diricinolein), comprising expression of RcDGAT2 RcDGAT2 coding sequences in yeast.

 
Web www.patentalert.com

< Method for Increasing Pathogen-Resistance in Transgenic Plants by Expression of Peroxidase

> Method of Constructing Novel Higher Plant and Method of Promoting the Growth of Higher Plant

~ 00476