A free-space standoff optical detection platform for any detection scheme based on spontaneous emissions, such as for example, fluorescence detection. More particularly, the present invention relates to a detection system having SPCE beads. In one embodiment, the SPCE beads are dielectric spheres coated with a thin metal layer, which supports surface plasmon resonance (SPR) at the operation wavelength. For fluorescence detection, fluorescence reporters can be coated outside of SPCE beads. Upon the presence of the analyte, the fluorescence reporter changes its emitting signal. The SPCE beads amplify the field strength of the excitation via the lens effect and SPR enhancement. The spontaneous emitting signal is collected via the coupling between the SPR and emission, which results high collection efficiency and signal-to-noise ratio. This surface plasmon-coupled emission (SPCE) signal propagates in the beads in a curved path dictated by the SPR condition. Finally, the SPCE signal is collimated by the beads and sent back to the standoff interrogator. Further, the SPCE beads may be spread over the target region and interrogated over a distance.

 
Web www.patentalert.com

< Living synthesis of conducting polymers including regioregular polymers, polythiophenes, and block copolymers

> Semiconductor device with stress reducing trench fill containing semiconductor microparticles in shallow trench isolation

~ 00446