A substance in a condensed state, for example a powdered solid, is in continuous movement in the longitudinal direction (6) of a furnace (4, 5). A reactive gas mixture is brought into contact with the substance in the condensed state. A plurality of samples of the gaseous mixture are removed at a plurality of reference points (14) spaced apart from one another along the longitudinal direction (6) of the furnace (4, 5); each of the gas samples is analyzed outside the furnace to determine the composition of the gas mixture and for each point (14), the extent of a chemical reaction between the condensed substance and the reactive gas mixture is deduced from the composition of the gas mixture at each of the reference points (14). In particular, the apparatus comprises a sampling and injection rod (10) introduced into the furnace (4, 5) and disposed in its longitudinal direction (6). The invention is of particular application to modeling a rotary furnace (4, 5) for converting uranium oxyfluoride into uranium oxides and for controlling the conversion reaction in the furnace (4, 5).

 
Web www.patentalert.com

< Non-silica mesoporous oxide having improved pore structure periodism, method of producing the mesoporous oxide and method of crystallizing pore wall of non-silica mesoporous oxide using template to be filled in pores

> Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same

~ 00433