An optoelectronic transducer comprises a unipolar, intraband active region and a micro-cavity resonator. The resonator includes a 2D array of essentially equally spaced regions that exhibits resonant modes. Each of the spaced regions has a depth that extends through the active region and has an average refractive index that is different from that of the active region. The refractive index contrast, the spacing of the spaced regions, and the dimensions of the spaced regions are mutually adapted so that the array acts as a micro-cavity resonator and so that at least one frequency of the resonant modes of the array falls within the spectrum of an optoelectronic parameter of the active region (i.e., the gain spectrum where the transducer is a laser; the absorption spectrum where the transducer is a photodetector). In a first embodiment, the transducer is an ISB laser, whereas in a second embodiment it is a unipolar, intraband photodetector. In other embodiments, the laser is a surface-emitting ISB laser and the photodetector is a vertically-illuminated detector. In another embodiment, a nonlinear optical material is optically coupled to the micro-cavity resonator, which in one case allows an ISB laser to exhibit bistable operation.

 
Web www.patentalert.com

< Wavelength agile laser

< Submount of semiconductor laser diode, method of manufacturing the same, and semiconductor laser diode assembly using the submount

> Self-pulsation type semiconductor laser

> Semiconductor laser device, optical disk apparatus and optical integrated unit

~ 00282