An apparatus and method are described for combining optical amplification and dispersion compensation in a Raman amplifier. A Dispersion-Managing Raman Amplifier (DMRA) combines Raman amplification with dispersion compensation by selecting the length and dispersion of the gain fiber to balance the dispersion of the link. This gain fiber is also single-mode at the signal and pump wavelengths. The pumping level is adjusted to balance the losses from the gain fiber and transmission link, while the pumping configuration is selected to remain within the 3 dB loss length for the pumping light. When the amplifier is split into two segments, the two segments may be joined by an isolator, a gain equalization element, and/or an optical add/drop multiplexer. For WDM transmission systems based on dispersion-shifted fiber (DSF), operation in the "violet band" between 1430-1530 nm is based on Raman amplification. By using a DMRA, a dispersion and nonlinearity managed system can be implemented. In particular, 4WM does not phase match in such a system, and modulation instability is absent in the transmission link. Furthermore, gain equalization can be added to the DMRA by cascading one or two Mach-Zehnder frequency filters. The invention also includes a method for symmetrically adding channels below and above the C-band, the gain tilt within the C-band can be minimized. Therefore, a roughly equal number of channels should be placed in the short-wavelength S-band and the long-wavelength L-band to minimize the Raman energy exchange in the C-band. Also, whereas C- and L-bands can be amplified using erbium-doped fiber amplifiers, the S-band can use either discrete or distributed Raman amplifiers. To minimize the interaction between pumps for different bands, alternate band pumps can be spatially dispersed and/or cross-polarized. The distributed Raman amplification can be achieved by pumping the transmission line with discrete laser diodes or by a Raman oscillator.

 
Web www.patentalert.com

< Optical frequency filter

< Objective with fluoride crystal lenses

> Optical pickup using an optical phase plate and which is compatible with optical media for different types

> Lens module assembly method and assembly intermediate

~ 00230