A digital circuit implementing pulse width modulation controls power delivered in what one can model as a second order or higher order system. An exemplary control plant could embody a step-down switch mode power supply providing a precise sequence of voltages or currents to any of a variety of loads such as the core voltage of a semiconductor unique compared to its input/output ring voltage. One of several algorithms produce a specific predetermined sequence of pulses of varying width such that the voltage maintains maximally flat characteristics while the current delivered to the load from the system plant varies within a range bounded only by inductive element continuous conduction at the low power extreme and non-saturation of the inductor core at the high power extreme. The specific pulse width modulation sequence controls a plant such that the voltage maintains maximally flat characteristics in one embodiment without a feed-forward or feedback loop physically embodied in the control system thereby reducing the parts cost or control semiconductor production yield cost while enhancing noise immunity and long term reliability of the control system. Several specific algorithms maintain maximally flat voltage despite extreme load variations therewith control plant element parameters otherwise exacerbating excessive voltage fluctuation during the given current transients.

 
Web www.patentalert.com

< Apparatus for measuring voltage

< Regulator and method for regulating

> Switching regulator with a phase locked loop phase locked to the output voltage

> Reference buffer circuits

~ 00607