Biocompatible materials suitable for use in vascular applications have been engineered, combining human recombinant tropoelastin with other synthetic or natural biomaterials to form protoelastin. The materials can be in the form of elastin films on metal, bone, ceramic or polymer substrates, laminates of alternating polymer and elastin, blends of polymer and elastin, or elastin crosslinked with or tethered to polymer. The flexibility in engineering and design makes protoelastin biomaterials suited not only to the production of conduits but any number of other vascular applications that require blood contacting surfaces. Tropoelastin and the subsequently engineered biomaterial protoelastin provide the opportunity to satisfy a large unmet need for a biocompatible material adaptable enough to meet a range of diverse vascular uses. These are mechanically stable, elastic, strong and biocompatible (i.e., not thrombogenic and promoting adhesion of cells, especially human endothelial cells.

 
Web www.patentalert.com

< Apparatus and methods for manipulating light using nanoscale cometal structures

> Apparatuses and methods for changing an intensity distribution of light within an illumination field without distorting the telecentricity of the light

> Methods, systems and computer program products for characterizing structures based on interferometric phase data

~ 00598