This invention relates to a system for exciting oscillations of micromechanical cantilever sensors and for measuring and evaluating the corresponding oscillations. Such sensors can e.g. be used to detect chemical substances, biomolecules, microorganisms or viruses, or to analyze surface-related phenomena and processes such as conformational changes or phase transitions in thin layers, or to measure physical properties of their surrounding, such as viscoelastic properties of liquids. In the so-called dynamic operation mode, cantilever oscillations are excited and the frequency shift of the ground frequency and/or of one or some higher harmonics, occurring because of a process taking place at the cantilever surface, are measured. In the so-called static mode, the deflection of the cantilever is determined. The setup described in this invention allows measurements in gases as well as liquids. It is characterized by an efficient transfer of the oscillation from a piezoelectric driver element to the cantilever over a wide frequency range. This is achieved through a sophisticated combination of a solid support structure, oscillation driver and insulators.

 
Web www.patentalert.com

< Frequency shift keying modulator having sigma-delta modulated phase rotator

> Method and apparatus for detection of a frequency coded sequence in the presence of sinusoidal interference

> Method and system for determining velocity by using variable or distinct sampling rates

~ 00584