A methodology for a daisy-chained memory topology wherein, in addition to the prediction of the timing of receipt of a response from a memory module (DIMM), the memory controller can effectively predict when a command sent by it will be executed by the addressee DIMM. By programming DIMM-specific command delay in the DIMM's command delay unit, the command delay balancing methodology according to the present disclosure "normalizes" or "synchronizes" the execution of the command signal across all DIMMs in the memory channel. With such ability to predict command execution timing, the memory controller can efficiently control power profile of all the DRAM devices (or memory modules) on a daisy-chained memory channel. A separate DIMM-specific response delay unit in the DIMM may also be programmed to provide DIMM-specific delay compensation in the response path, further allowing the memory controller to accurately ascertain the timing of receipt of a response thereat, and, hence, to better manage further processing of the response.

 
Web www.patentalert.com

< Systems and methods for memory migration

> System and method for aggregating shelf IDs in a fibre channel storage loop

> Optimizing data bandwidth across a variable asynchronous clock domain

~ 00582