A nano data writing and reading apparatus using a cantilever structure includes a cantilever formed by patterning a deposition material deposited on a sacrificial substrate, a probe formed at a front end portion of one surface of the cantilever and formed simultaneously with the cantilever as the deposition material is filled in a probe groove pattern formed on the sacrificial substrate when the deposition material is deposited on the sacrificial substrate, a heater formed of polycrystalline silicon at the cantilever, for heating the probe, a data sensing unit formed at the cantilever and sensing data written on media, a signal connection pad connected to the data sensing unit and formed at the cantilever to provide an electrical connection with an external signal line, a signal transfer circuit unit connected to the signal connection pad, for controlling writing and reading of data on and from the media, and a bonding unit allowing the cantilever to be supported at the signal transfer circuit unit and providing a passage for an electrical connection between the signal connection pad and the signal transfer circuit unit. Accordingly, the cantilever and the probe can be precisely formed by a molding technique through the removal of a sacrificial substrate and are formed of a deposition material such as a silicon nitride material, thereby remarkably reducing variations in a thickness of the cantilever and improving the durability of the probe. Also, because a bonding process with a glass wafer for fabricating the cantilever structure is not required, the process is facilitated and a fabrication coast is greatly reduced.

 
Web www.patentalert.com

< Nanoscale shift register and signal demultiplexing using microscale/nanoscale shift registers

> Magnetic nanoparticles having improved magnetic properties

> Process using compact embedded electron induced ozonation and activation of nanostructured titanium dioxide photocatalyst for photocatalytic oxidation

~ 00575