A tunable optical cavity can be tuned by relative movement between two reflection surfaces, such as by deforming elastomer spacers connected between mirrors or other light-reflective components that include the reflection surfaces. The optical cavity structure includes an analyte region in its light-transmissive region, and presence of analyte in the analyte region affects output light when the optical cavity is tuned to a set of positions. Electrodes that cause deformation of the spacers can also be used to capacitively sense the distance between them. Control circuitry that provides tuning signals can cause continuous movement across a range of positions, allowing continuous photosensing of analyte-affected output light by a detector.

 
Web www.patentalert.com

< Composition and method for self-assembly and mineralization of peptide amphiphiles

> Multi wavelength electromagnetic device

> Components and methods for use in electro-optic displays

~ 00566