The method is suitable for the manufacture of flat or shaped titanium aluminide articles and layered metal matrix composites such as lightweight plates and sheets for aircraft and automotive applications, thin cross-section vanes and blades, composite electrodes, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as for sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. The method includes the following steps: (a) forming a porous preform of the reactive powder alloy or a porous multi-layer composite preform consisting of reactive powder metals and alloys by consolidation using at least one method selected from low-temperature loose sintering in vacuum, high-temperature loose sintering in vacuum, low-pressure sintering in an inert gas, cold pressing, direct powder rolling, isostatic or die pressing, and other means of room temperature and warm temperature consolidation, and/or combination thereof, to provide the density not less than 25% from the theoretical density of said reactive alloy; (b) hot consolidating by hot pressing said preform, hot rolling, hot isostatic pressing, or hot extrusion to obtain the density of 98-100% from the theoretical density of said reactive alloy; (c) additional sintering and/or annealing at the temperature being at least 900.degree. C. to decrease the residual porosity, control the microstructure, and improve the mechanical properties, especially ductility and/or plasticity of the resulting metal sheets or layered composites. The hot pressing is carried out at the temperature ranging 950-1700.degree. C., preferably at 1250-1450.degree. C., and at pressure ranging 50-350 kg/cm.sup.2. The HIP is carried out at the temperature ranging 1250-1350.degree. C. and at pressure ranging 15000-40000 psi. The layered composite preform is manufactured by individual loose sintering, one layer of the composite at a time, and assembling them in the desired order. The composite consists of layers of titanium and/or titanium hydride, Ti-6Al-4V alloy, .alpha.-titanium aluminide alloy, .beta.-titanium aluminide alloy, and .gamma.-titanium aluminide alloy in any combinations.

 
Web www.patentalert.com

< Integral frame member for an aircraft

> Low shrink telecommunications cable and methods for manufacturing the same

> Conductive thermosets by extrusion

~ 00537