In a semiconductor laser device of the invention, a ridge portion 150 forms a waveguide, and guided light goes along the ridge portion 150. A tail of the guided layer is present also at first side portions 151, while second side portions 152 are regions which the tail of the guided light does not reach. Meanwhile, scattered light generated from the ridge portion 150 goes through the first side portions 15, spreading into the second side portions 152. In the second side portions 152, a light absorption layer 127 serving as a light absorber is formed on the first upper clad layer 108, where the scattered light is absorbed. As a result of the absorption of scattered light in the second side portions 152, ripples of radiation light are reduced. Also since the light absorption layer 127 is in electrical contact with a p-side ohmic electrode 125, the problem of charge accumulation to the light absorption layer 127 can be avoided.

 
Web www.patentalert.com

< Intersubband mid-infrared electroluminescent semiconductor devices

> Semiconductor laser device, semiconductor laser device manufacturing method, optical disk apparatus and optical transmission system

> High power low inductance RF hermetic sealed feed-through for slab CO2 lasers

~ 00531