A cache memory which loads two memory values into two cache lines by receiving separate portions of a first requested memory value from a first data bus over a first time span of successive clock cycles and receiving separate portions of a second requested memory value from a second data bus over a second time span of successive clock cycles which overlaps with the first time span. In the illustrative embodiment a first input line is used for loading both a first byte array of the first cache line and a first byte array of the second cache line, a second input line is used for loading both a second byte array of the first cache line and a second byte array of the second cache line, and the transmission of the separate portions of the first and second memory values is interleaved between the first and second data busses. The first data bus can be one of a plurality of data busses in a first data bus set, and the second data bus can be one of a plurality of data busses in a second data bus set. Two address busses (one for each data bus set) are used to receive successive address tags that identify which portions of the requested memory values are being received from each data bus set. For example, the requested memory values may be 32 bytes each, and the separate portions of the requested memory values are received over four successive cycles with an 8-byte portion of each value received each cycle. The cache lines are spread across different cache sectors of the cache memory, wherein the cache sectors have different output latencies, and the separate portions of a given requested memory value are loaded sequentially into the corresponding cache sectors based on their respective output latencies. Merge flow circuits responsive to the cache controller are used to receive the portions of a requested memory value and input those bytes into the cache sector.

 
Web www.patentalert.com

< method for generating a set of test patterns for an optical proximity correction algorithm

> Adaptive replacement cache

~ 00486