A vertical take-off aircraft is disclosed. Looking at the aircraft it can be seen that the aircraft consists of a main rotor assembly 1 at the top of the aircraft which consists of an assembly of blades 2, 3 and a rotor 4. Rotation of the main rotor assembly 1 is achieved by using an engine assembly 5. The main engine assembly is connected to the main body 6 of the aircraft by a tilt enabling joint 7. The tilt enabling joint 7 allows tilting of the main engine 5 relative to the main body 6 of the aircraft to occur in a controlled manner during flight. A universal joint 8 is used to allow tilting to occur. The tilt enabling joint 7 is fitted with a combination of hydraulic actuators 9, 10 and springs 11, 12 and 13 that allow the tilting of the tilt enabling joint 7 to be controlled. When the main engine 5 is tilted, the main rotor assembly 1 is tilted with it. Tilting of the main engine assembly 5 thus initiates changes in the direction of travel of the aircraft without the need to change the pitch angles of the blades 2 and 3. To counter the rotational force exerted on the main body 6 of the aircraft by the rotation of the main rotor assembly 1, an additional engine assembly 15 is attached to the main body aircraft, which rotates a secondary rotor assembly 16. The secondary rotor assembly consists of blades 17 and 18, and a rotor 19. Rotation of the secondary rotor assembly pushes air in a primarliy horizontal direction by way of the pitch of the blades 17 and 18.

 
Web www.patentalert.com

< Compound aircraft control system and method

> Stratospheric balloon utilizing electrostatic inflation of walls

~ 00469