An atomic force microscope (AFM) having a hollowed cantilever ending in a hollowed tip is described, wherein the end of the tip is immersed in a liquid. The AFM includes a gas source that provides and controls the flow of gas into the hollowed tip. The flow rate of the gas is regulated to form and sustain a static bubble at the end of the hollowed tip. The formation of the static bubble is verified optically. A gas control manifold allows an easy switch of gasses that are fed into the probe tip. The gas that is introduced acts like a chemically modified tip, and is selected to increase the deflection signal for the material of interest. The tip of the present invention is a highly versatile AFM tool that is easily adjusted to provide optimized imaging for a wide variety of materials, in contrast with standard AFMs that require a plethora of chemically modified tips to obtain equivalent results. Moreover, there is a much lower propensity for the tip to damage the sample or to be damaged from inadvertent contact with the surface of the sample.

 
Web www.patentalert.com

> Image input system

~ 00383