A high performance MTJ in an MRAM array is disclosed in which the bottom conductor has an amorphous Ta capping layer. A key feature is a surfactant layer comprised of oxygen that is formed on the Ta surface. The resulting smooth and flat Ta capping layer promotes a smooth and flat surface in the MTJ layers which are subsequently formed on the surfactant layer. For a 0.3.times.0.6 micron MTJ bit size, a 35 to 40 Angstrom thick NiFe(18%) free layer, an AlOx barrier layer generated from a ROX oxidation of an 9 to 10 Angstrom thick Al layer, and a Ru/Ta/Ru capping layer are employed to give a dR/R of >40% and an RA of about 4000 ohm-.mu.m.sup.2. The MTJ configuraton is extendable to a 0.2.times.0.4 micron MTJ bit size.

 
Web www.patentalert.com

> Excimer or molecular fluorine laser system with precision timing

~ 00342