A method for making an integrated circuit is disclosed as comprising depositing alternating regions of electrically conductive and dielectric materials on a substrate, wherein an area of dielectric material is formed by: a silane precursor having a fully or partially fluorinated first organic group comprising an unsaturated carbon-carbon double bond, the fully or partially fluorinated organic group bound to silicon in the silane precursor; forming from the silane precursor a hybrid organic-inorganic material having a molecular weight of at least 500 on a substrate; and increasing the molecular weight of the hybrid material by exposure to heat, electromagnetic radiation or electron beam so as to break the unsaturated carbon-carbon double bond and cross link via the fully or partially fluorinated organic group. Also disclosed is a method for making an integrated circuit is disclosed as comprising: reacting a compound of the general formula X3MOR3.sub.3, where X3 is a halogen, M is silicon, and OR3 is alkoxy; with a compound of the general formula R1M1; where R1 is selected from alkyl, alkenyl, aryl and alkynyl and wherein R1 is partially or fully fluorinated; and M1 is an element from group I of the periodic table; so as to form a compound of the general formula R1MOR3.sub.3; hydrolyzing and condensing R1MOR3.sub.3 so as to form a hybrid organic-inorganic material with a molecular weight of at least 500; depositing the hybrid organic-inorganic material on a substrate as an insulator in an integrated circuit; depositing, before or after depositing the hybrid material, an electrically conductive material within the integrated circuit.

 
Web www.patentalert.com

> ENHANCED ULTRASOUND DETECTION WITH TEMPERATURE-DEPENDENT CONTRAST AGENTS

~ 00337