A method and system for a helicopter blade emergency detachment system that has an activator in the cockpit to initiate the system, an ignition train to provide the detonation signal, a transfer system at the base of the main rotor shaft to move the signal from the stationary helicopter to the rotating blades, and explosive charges located at the root of each main bearing-less rotor blade to separate the composite blade from the main rotor. These four components interact in the way described to enable the blades of the helicopter to be detached during an emergency, thus increasing the stability of the aircraft during a hard landing and/or allowing for the use of an occupant ejection seat or parachute while the helicopter is still in flight.

 
Web www.patentalert.com

> Unmanned helicopter, takeoff method of unmanned helicopter, and landing method of unmanned helicopter

~ 00334