Human muscle tissues involve striated and smooth muscles. Each muscle tissue possesses its own special function. Differences of physiology functions among the muscle tissues are mainly determined by their various initiation and signal transmission systems, defined as the pre-muscle molecular motor mechanism, or initiating and regulating mechanism. The current medications, drugs, and therapies for diseases and symptoms related abnormal increased muscle tone or excessive muscle contraction are aimed just at the pre-muscle molecular motor mechanisms, whereas without directly intending to effect on the muscle molecular motor mechanism i.e. the contractile apparatus mechanism at all, which, however, is in common for all kinds of muscle tissues. The muscle molecular motor mechanism mainly involves recycling of actin-myosin filament cross-bridge formation and sliding movement. In the process, bio-energy provided by ATP hydrolysis is necessarily required. Therefore, abnormal increased muscle tone or excessive contraction of muscle tissues under diseased conditions may be modified by inhibition of the muscle molecular motor with the actin-myosin ATPase inhibitor, which blocks hydrolysis of ATP, then reduces release of bio-energy for the muscle contraction.Our studies in vitro and in vivo have demonstrated that BDM, an ATPase inhibitor, thereby, its analogues, derivatives, and other chemicals possessing similar effect on ATPase may be used as bio-energy muscle relaxants (general muscle relaxants).

 
Web www.patentalert.com

> Substituted phenoxyacetic acids

~ 00307