A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise single wavelength excitation light, scanning of excitation light (illuminating the tissue at a plurality of wavelengths), detection at a single wavelength, scanning of detection wavelengths (detecting emitted light at a plurality of wavelengths), and combinations thereof. The invention also can comprise correction techniques that reduce determination errors due to detection of light other than that from fluorescence of a chemical in the tissue. For example, the reflectance of the tissue can lead to errors if appropriate correction is not employed. The invention can also comprise a variety of models relating fluorescence to a measure of tissue state, including a variety of methods for generating such models. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method, including appropriate light sources, detectors, and models (for example, implemented on computers) used to relate detected fluorescence and a measure of tissue state.

 
Web www.patentalert.com

> Optical techniques for examination of biological tissue

~ 00303