Nanotube-based switching elements and logic circuits. Under one embodiment of the invention, a switching element includes an input node, an output node, a nanotube channel element having at least one electrically conductive nanotube, and a control electrode. The control electrode is disposed in relation to the nanotube channel element to controllably form an electrically conductive channel between the input node and the output node. The channel at least includes said nanotube channel element. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. Under another embodiment of the invention, the control electrode is arranged in relation to the nanotube channel element to form said conductive channel by causing electromechanical deflection of said nanotube channel element. Under another embodiment of the invention, the output node includes an isolation structure disposed in relation to the nanotube channel element so that channel formation is substantially invariant from the state of the output node. Under another embodiment of the invention, the isolation structure includes electrodes disposed on opposite sides of the nanotube channel element and said electrodes produce substantially the same electric field. Under another embodiment of the invention, a Boolean logic circuit includes at least one input terminal and an output terminal, and a network of nanotube switching elements electrically disposed between said at least one input terminal and said output terminal. The network of nanotube switching elements effectuates a Boolean function transformation of Boolean signals on said at least one input terminal. The Boolean function transformation includes a Boolean inversion within the function, such as a NOT or NOR function.

 
Web www.patentalert.com

> Imprinting-damascene process for metal interconnection

~ 00302