The invention relates to a method for the production of polyurethane-based technical formed parts, commodity goods and objects, preferably consisting of (meth)acrylate containing isocyanate and hydroxy groups and at least 0.5 mMol/g reactive double bonds that can be determined using a DSC method. In a first step, a mixture of all starting constituents is produced and given a desired form using methods such as casting, pressing, rolling or extruding that are known per se in plastic engineering technology, whereby said mixture simultaneously or subsequently undergoes a non-radically triggered polyaddition reaction (urethane reaction) and a polyurethane substance is created in the form of a flexible, optionally elastic pre-form that can be deformed without any removal of said material. In a second step, the pre-form undergoes preferably mechanical shaping in addition to substantially emission-free hardening by means of radical polymerization of the free double bonds. The invention also relates to products that are manufactured using this method in addition to multiple applications thereof, such as directly in the place where they are used, in order to produce highly resistant shaped bodies and composite elements that can be used more particularly in fields such as medicine (e.g. surgery, orthopaedics, dental medicine), technology (e.g. civil engineering, the construction industry, motor vehicle production, insulation technology, measuring and lighting technology), the home, cosmetics and fine art.

 
Web www.patentalert.com

> Electrode assembly for constant-current electroporation and use

~ 00301