A process for closing hollow-core defects, called micropipes, during growth by CVD of a SiC crystal on a SiC single crystal substrate having hollow-core defects, and a crystal obtained according to the process, by contacting the SiC crystal with a source gas adjusted to a C/Si atom ratio range in which the crystal growth rate is determined by the carbon atom supply limitation, then epitaxially growing and laminating a plurality of SiC crystal layers, wherein hollow-core defects in the SiC single crystal substrate dissociate into a plurality of dislocations given by small Burghers vector in order not to propagate to the crystal surface. In addition, the present invention provides a fabrication process of a SiC crystal, wherein a first SiC crystal is made as a buffer layer, and a further SiC crystal is layered thereon using a source gas adjusted to be higher than that of the C/Si ratio when forming the buffer layer, whereby a desired film property is conferred.

 
Web www.patentalert.com

< Method of fabricating a multi-layered thin film by using photolysis chemical vapor deposition

< Gate dielectric structure for reducing boron penetration and current leakage

> Lanthanide oxide dielectric layer

> Manufacturing process for annealed wafer and annealed wafer

~ 00276