A reduced order model called the Fundamental Mistuning Model (FMM) accurately predicts vibratory response of a bladed disk system. The FMM software may describe the normal modes and natural frequencies of a mistuned bladed disk using only its tuned system frequencies and the frequency mistuning of each blade/disk sector (i.e., the sector frequencies). The FMM system identification methods--basic and advanced FMM ID methods--use the normal (i.e., mistuned) modes and natural frequencies of the mistuned bladed disk to determine sector frequencies as well as tuned system frequencies. FMM may predict how much the bladed disk will vibrate under the operating (rotating) conditions. Field calibration and testing of the blades may be performed using traveling wave analysis and FMM ID methods. The FMM model can be generated completely from experimental data. Because of FMM's simplicity, no special interfaces are required for FMM to be compatible with a finite element model. Because of the rules governing abstracts, this abstract should not be used to construe the claims.

 
Web www.patentalert.com

< Multipolar pacing method and apparatus

< Suture sleeve

> Energy consumption in electrical drive

> Method and apparatus for node electronics unit architecture

~ 00276