A device and method for reading optical marks are disclosed. The device, an optical mark reader (OMR) has an array of photo sensors with light-emitting diodes (LEDs), which are driven by digital-to-analog converters (DACs), which are in turn controlled by a microcontroller. When calibrating the OMR, the sensors read a white card, and the microcontroller adjust the DACs so that the outputs of all sensors are at a voltage close to the saturation points of the photo-transistors in the sensors so that the maximum useable ranges of the sensors are utilized. The sensors then read one or more patterns of known grayscales and their response voltages are recorded. The microcontroller generates an array of voltage values as a function of grayscale for each sensor and store the values in a memory device. When reading an optical marks, the sensor output voltage in response to a mark is looked up in the table of voltages values stored in the memory device to determine the grayscale of the mark. Various algorithms may be employed to calculate an apparent grayscale to allow the test taker's true intent be ascertained without requiring the test taker to make a perfect mark.

 
Web www.patentalert.com

< Edge detection and sharpening process for an image

< Tone scale adjustment of digital images

> Pre-crash sensing system and method for detecting and classifying objects

> System and method for manipulating a skewed digital image

~ 00274