An identification (ID) tag includes a substrate having an input capable of receiving a high frequency signal. For instance, the high frequency signal can be a radio frequency (RF) signal that is generated as part of a radio frequency (RF) ID system. A first charge pump is coupled to the input and is configured to convert the high frequency signal to a substantially direct current (DC) voltage. A data recovery circuit is coupled to the input and is capable of recovering data from the high frequency signal. A back scatter switch is coupled to the input and is capable of modifying an impedance of the input, responsive to a control signal. A state machine is disposed on the substrate and is responsive to the data recovered by the second charge pump, where the state machine is capable of generating the control signal for the back scatter switch in response to the data. The DC voltage from the first charge pump is capable of providing a voltage supply for at least one of the data recovery circuit, the back scatter switch, and the state machine. The data recovery circuit includes a second charge pump that is capable of operating on the high frequency signal simultaneously with the first charge pump. In other words, the first charge pump can generate the supply voltage for the ID tag from the high frequency signal, while the second charge pump simultaneously retrieves the data from the high frequency signal. The first charge pump also includes a means for limiting the amplitude of the DC voltage by reducing the charge pump efficiency, once a threshold voltage is reached.

 
Web www.patentalert.com

< Method for monitoring objects with transponders

< RFID based security network

> Precursor compositions for the deposition of electrically conductive features

> Sensor devices for structural health monitoring

~ 00274