We disclose several instrument architectures for the measurement of arbitrary phase retardation on advanced lithography photomasks. These architectures combine traditional interferometric techniques with high-magnification UV microscopy. Features are interrogated using a multitude of phase probes, formed by a imaging a number of variable apertures back-illuminated by phase-coherent beams, onto the surface of the photomask with a given demagnification. The size, spacing, and orientation of the phase probes may be adjusted to suit photomask feature geometries. Means are provided to vary the relative optical phase between the phase probes. These phase probes both reflect from and transmit through the photomask; the stationary, non-localized interference fringes, formed in the regions of phase probe electric field overlap, contain information on the optical path difference between the two probes. The spatial resolution of these measurements is limited only by the resolution limit of the UV microscope, which may significantly exceed the capability of existing tools.

 
Web www.patentalert.com

< Apricot tree named 'Suaprinine'

< Long oligonucleotide arrays

> Methods and circuits for programming of a semiconductor memory cell and memory array using a breakdown phenomenon in an ultra-thin dielectric

> Temperature measurement apparatuses and method utilizing the alexandrite effect

~ 00261