A fuel cell system including a fuel reforming processor having a catalyst therein constructed and arranged to produce a reformate stream including hydrogen and carbon monoxide, a water gas shift reactor downstream of the fuel reforming processor and wherein the water gas shift reactor includes a catalyst therein constructed and arranged to reduce the amount of carbon monoxide in the reformate stream, a preferential oxidation reactor downstream of the water gas shift reactor and wherein the preferential oxidation reactor includes a catalyst therein constructed and arranged to preferentially oxidize carbon monoxide into carbon dioxide and to produce a hydrogen-rich stream, and a fuel cell stack downstream of the preferential oxidation reactor constructed and arranged to produce electricity from the hydrogen-rich stream, a first direct water vaporizing combustor constructed and arranged to combust fuel producing a high-temperature fuel combustion byproducts exhaust and to produce steam from water sprayed into the combustion byproduct exhaust and wherein the first direct water vaporizing combustor is plumbed to the fuel reforming reactor to charge steam therein, and a second direct water vaporizing combustor constructed and arranged to combust fuel to produce a high-temperature fuel combustion byproduct exhaust and to produce steam from water sprayed into the fuel combustion byproduct exhaust and wherein the second direct water vaporizing combustor is plumbed to the water gas shift reactor to charge steam therein.

 
Web www.patentalert.com

< In situ thermal processing and solution mining of an oil shale formation

< Intermediate precursor compositions used to make supported catalysts having a controlled coordination structure and methods for preparing such compositions

> Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

> Direct hydrocarbon reforming in protonic ceramic fuel cells by electrolyte steam permeation

~ 00243