An exemplary system and method for manufacturing micropump systems having integrated piezoresistive sensors is disclosed as including inter alia: a substrate, an inlet channel, an outlet channel, a pumping cavity, a first valve for permitting fluid flow from the inlet channel to the pumping cavity and restricting backflow of purged fluid from the pumping cavity to the inlet channel; a second valve for permitting fluid flow from the pumping cavity to an outlet channel and restricting backflow of purged fluid from the outlet channel to the pumping cavity; a pump actuator element; a pressure sensing cavity surface capable of at least partial mechanical deformation; a plurality of piezoresistors disposed within the sensing cavity; a plurality of contact pads; a plurality of conductive pathways connecting the piezoresistors and the contact pads; and a substantially monolithic device package, wherein the sensing cavity is substantially contained within the micropump device package. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve micropump operation in any microfluidic application. Exemplary embodiments of the present invention representatively provide for piezoresistive pressure sensors that may be readily integrated with existing portable ceramic technologies for the improvement of device package form factors, weights and other manufacturing and/or device performance metrics.

 
Web www.patentalert.com

< Pump design for circulating supercritical carbon dioxide

< Electric pump

> Fluid pumping apparatus

> Pump priming apparatus

~ 00234