In a method of amplifying optical input signals over a wide bandwidth, the optical input signals are applied to an optical waveguide made from a rare-earth-doped amorphous material (e.g., erbium-doped Bi4Ge3O12 material). The optical input signals include optical signals having wavelengths over a range of approximately 125. Pump light is applied to the optical waveguide to cause the waveguide to provide optical gain to the optical input signals. The optical gain causes the optical signals to be amplified within the waveguide to provide amplified optical signals over the approximately 125-nanometer range, including, in particular, optical signals having wavelengths at one end of the range and optical signals having wavelengths at a second end or the range.

 
Web www.patentalert.com

< Methods of forming waveguides and waveguides formed therefrom

< Ferroelectric-type nonvolatile semiconductor memory

> Thermal insulating material and method of producing same

> Organic EL element and organic EL display

~ 00225