Inkjet printheads capable of printing smaller and larger drop-weight quantities of ink, and methods of manufacturing the inkjet printheads, are disclosed. The inkjet printhead includes a substrate. One or more portions of the substrate may be etched such that the substrate might have different thicknesses. A thin-film layer is connected to the substrate and contains independently addressable ink-energizing elements, preferably resistors. An orifice layer having a substantially planar exterior surface is applied directly to the thin-film layer. Consequently, the thickness of the orifice layer varies with the thickness of the substrate. At least one firing chamber is defined in each portion of the orifice layer with a different thickness and, preferably, different-sized resistors. Alternatively, the orifice layer has a substantially uniform thickness. In order to achieve the multiple drop-weight capability of the present invention, firing chambers of different volumes are provided. In this embodiment, firing chambers that are to provide a larger drop-weight preferably have a more powerful ink-energizing element and are laterally offset from the firing chamber nozzle aperture. Other firing chambers that are to provide a small drop-weight preferably have a less powerful ink-energizing element and are aligned with the firing chamber nozzle aperture. Thus, the present invention provides inkjet printheads capable of printing various drop-weight quantities of ink.

 
Web www.patentalert.com

< Ink jet recording head, manufacturing method therefor, and substrate for ink jet recording head manufacture

< Continuous in-line process for making ink-jet recording media comprising a radiation-cured coating layer

> Thermal ink ejection actuator

> Ejection head for aggressive liquids manufactured by anodic bonding

~ 00221